Posts

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index and the value in a loop, enumerate is a more Pyth

Python map() and lambda() Use Cases and Examples

Image
 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work. Python map and lambda top use cases 1. Using map() with lambda The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list). Example: Doubling Numbers numbers = [ 1 , 2 , 3 , 4 , 5 ] doubled = list ( map ( lambda x: x * 2 , numbers)) print (doubled) # Output: [2, 4, 6, 8, 10] 2. Using map() to Convert Data Types Example: Converting Strings to Integers string_numbers = [ "1" , "2" , "3" , "4" , "5" ] integers = list ( map ( lambda x: int (x), string_numbers)) print (integers) # Output: [1, 2, 3, 4, 5] 3. Using map() with Multiple Iterables You can also use map() with more than one iterable. The lambda function can take multiple arguments. Example: Adding Two Lists Element-wise list1 = [ 1 , 2 , 3 ]

How to Build CI/CD Pipeline: GitHub to AWS

Image
 Creating a CI/CD pipeline to deploy a project from GitHub to AWS can be done using various AWS services like AWS CodePipeline, AWS CodeBuild, and optionally AWS CodeDeploy or Amazon ECS for application deployment. Below is a high-level guide on how to set up a basic GitHub to AWS pipeline: Prerequisites AWS Account : Ensure access to the AWS account with the necessary permissions. GitHub Repository : Have your application code hosted on GitHub. IAM Roles : Create necessary IAM roles with permissions to interact with AWS services (e.g., CodePipeline, CodeBuild, S3, ECS, etc.). AWS CLI : Install and configure the AWS CLI for easier management of services. Step 1: Create an S3 Bucket for Artifacts AWS CodePipeline requires an S3 bucket to store artifacts (builds, deployments, etc.). Go to the S3 service in the AWS Management Console. Create a new bucket, ensuring it has a unique name. Note the bucket name for later use. Step 2: Set Up AWS CodeBuild CodeBuild will handle the build proces

5 SQL Queries That Popularly Used in Data Analysis

Image
 Here are five popular SQL queries frequently used in data analysis. 1. SELECT with Aggregations Summarize data by calculating aggregates like counts, sums, averages, etc. SELECT department, COUNT(*) as employee_count, AVG(salary) as average_salary FROM employees GROUP BY department; 2. JOIN Operations  Combine data from multiple tables based on a related column. SELECT e.employee_id, e.name, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id; 3. WHERE Clause for Filtering Filter records based on specified conditions. SELECT * FROM sales WHERE sale_date BETWEEN '2024-01-01' AND '2024-12-31'   AND amount > 1000; 4. ORDER BY Clause for Sorting Sort results in ascending or descending order based on one or more columns. SELECT product_name, price FROM products ORDER BY price DESC; 5. GROUP BY with HAVING Clause Group records and apply conditions to the aggregated results. SELECT department, SUM(salary) as total_salaries FROM employ

8 Ways to Optimize AWS Glue Jobs in a Nutshell

Image
  Improving the performance of AWS Glue jobs involves several strategies that target different aspects of the ETL (Extract, Transform, Load) process. Here are some key practices. 1. Optimize Job Scripts Partitioning : Ensure your data is properly partitioned. Partitioning divides your data into manageable chunks, allowing parallel processing and reducing the amount of data scanned. Filtering : Apply pushdown predicates to filter data early in the ETL process, reducing the amount of data processed downstream. Compression : Use compressed file formats (e.g., Parquet, ORC) for your data sources and sinks. These formats not only reduce storage costs but also improve I/O performance. Optimize Transformations : Minimize the number of transformations and actions in your script. Combine transformations where possible and use DataFrame APIs which are optimized for performance. 2. Use Appropriate Data Formats Parquet and ORC : These columnar formats are efficient for storage and querying, signif

5 Commonly Asked SQL Queries in Interviews

Image
 Here are the five top commonly asked SQL queries in the interviews. These you can expect in Data Analyst, or, Data Engineer interviews. SQL Queries for Interviews 01. Joins The commonly asked question pertains to providing two tables, determining the number of rows that will return on various join types, and the resultant. Table1 -------- id ---- 1 1 2 3 Table2 -------- id ---- 1 3 1 NULL Output ------- Inner join --------------- 5 rows will return The result will be: =============== 1  1 1   1 1   1 1    1 3    3 02. Substring and Concat Here, we need to write an SQL query to make the upper case of the first letter and the small case of the remaining letter. Table1 ------ ename ===== raJu venKat kRIshna Solution: ========== SELECT CONCAT(UPPER(SUBSTRING(name, 1, 1)), LOWER(SUBSTRING(name, 2))) AS capitalized_name FROM Table1; 03. Case statement SQL Query ========= SELECT Code1, Code2,      CASE         WHEN Code1 = 'A' AND Code2 = 'AA' THEN "A" | "AA&qu

SQL Query: 3 Methods for Calculating Cumulative SUM

Image
SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences. Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle) SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum  FROM your_table; This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column. Using Subqueries (e.g., MySQL, SQLite): SELECT t1.id, t1.value, SUM(t2.value) AS cumulative_sum FROM your_table t1 JOIN your_table t2 ON t1.id >= t2.id GROUP BY t1.id, t1.value ORDER BY t1.id; This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than or