Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

5 Key Ideas on SAS Banking Analytics

SAS is providing solutions for banking. Getting away with financial crime just got harder. The latest SAS Financial Crimes Suite arms institutions to detect potential suspicious activity more efficiently than ever.
A new customer due diligence solution within the suite more accurately detects changes in a customer’s risk profile. Enhanced anti-money laundering and case management capabilities also make it easier to have a complete view of threats across an institution’s financial crimes investigation unit.

“A comprehensive view of potential threats will help in efforts to thwart criminals from successful attempts of hiding illicit funds,” says James Wester, global payments research director at IDC Financial Insights.

 “A technology infrastructure with customer risk rating and high-performance analytics will help speed detection and investigation in all channels.”.

SAS Analytics Suite for Banking Crimes

  1. Today’s rigorous regulatory environment requires banks to move quickly with confidence. SAS Financial Crimes Suite uses a visual scenario designer to recommend optimal detection models. The designer instantly assesses the impact of potential scenarios and risk-rating changes.
  2. In-memory architecture speeds analysis of real-time testing environments, reducing guesswork through improved model efficiency. 
  3. To identify potential money launderers and people funneling money to terrorists, institutions must constantly assess customer activity. The SAS Customer Due Diligence does this by weighing all customer data to set baseline expectations. 
  4. Data management features easily integrate key customer attributes from external sources and detect incriminating relationships. 
  5. The regulatory reporting interface controls both workflow and investigations. Context-aware analytics intercept and assess events for possible risk. The resulting baseline customer score can be automatically updated with a new risk rating based on behavior changes
Related


Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)