Featured Post

Python Logic to Find All Unique Pairs in an Array

Image
 Here's the Python logic for finding all unique pairs in an array that sum up to a target value. Python Unique Pair Problem Write a Python function that finds all unique pairs in an array whose sum equals a target value. Avoid duplicates in the result. For example: Input: arr = [2, 4, 3, 5, 7, 8, 9] , target = 9 Output: [(2, 7), (4, 5)] Hints Use a set for tracking seen numbers. Check for complements efficiently. Example def find_unique_pairs(arr, target):     """     Finds all unique pairs in the array that sum up to the target value.     Parameters:     arr (list): The input array of integers.     target (int): The target sum value.     Returns:     list: A list of unique pairs that sum to the target value.     """     seen = set()     pairs = set()     for num in arr:         complement = target - num         if complement in seen:...

Social Analytics - How Marketers Will Use

Of all the windows through which a business can peer into an audience, seems most enticing. The breadth of subjects, range of observations, and, above all, the ability to connect and draw inferences make hugely exciting for anyone who is interested in understanding and influencing past, present and potential customers, employees, or even investors.

As individuals leave traces of their activities - personal, social and professional - on the internet, they allow an unprecedented view into their lives, thoughts, influences and preferences. Social analytics attempts to draw useful understanding and inferences, which could be relevant to marketers, sales persons, HR managers, product designers, investors and so on. Thus, as social tools like Facebook, Twitter, LinkedIn, WhatsApp, and many more, host a plethora of social activities of many people, a humongous amount of data is generated about people's preferences, behaviour and sentiments. Like any data, it is amenable to analysis to gain useful insights.

The challenge comes from the sheer volume, velocity, and variety. It is very difficult to ensure that the analysis is relevant and reliable. Besides the daunting technical intricacies of setting up the appropriate analytics, the aspects of choosing information sources, filtering the right data, and its interpretation and aggregation are susceptible to errors and biases. For example, some social activities are relatively easier to access (like activity on Twitter, or public updates on Facebook), many are not. Some types of data (like text, or location) are easy to search and interpret, many (like pictures) are not. So a good analysis model must judiciously compensate for the nature of the sources included, and hence it could be at times very difficult to assess if the analysis is useful or just meaningless mumbo-jumbo.

Read more

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)