Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Maximizing Your SAP HANA Skills: Top 5 Course Contents to Consider

You can find SAP HANA course contents for your quick reference. You can download as a pdf. Before you take a course these are the contents you need to learn.


Module#1. SAP HANA Introduction and Architecture


  • SAP HANA Overview 
  • SAP In-Memory Computing Overview 
  • SAP HANA Features 
  • Look and feel of SAP HANA 
  • SAP HANA Architecture 
  • SAP HANA Landscape 
  • Structure of SAP in-memory Computing studio 
  • Row store and column store Architecture 
  • Multi Version Currency Control(MVCC) 
  • Persistence Layer in In-memory Computing Engine 
  • Back up &Recovery 
  • High-Availability 
  • Distributed System 
  • Data Provisioning options in SAP HANA 
  • Reporting options on SAP HANA 
  • Security options in HANA 
  • SAP HANA Appliance Model 
  • How SAP HANA Appliance is delivered 
  • Sizing Considerations 
  • SAP HANA –Licensing Options 
  • SAP HANA Project Implementation 
  • Overview: Key Activities 
  • Key Roles 
  • Key Points to keep in mind 
  • Administration


Module#2. Basic Modeling


  • Modeling Overview
  • Terminology
  • SAP HANA Studio Features
  • Information Modeler Overview
  • Installation and Configuration of HANA Studio
  • Prerequisites for Modeling
  • Modeling Considerations
  • Levels of Modeling
  • Attribute Views
  • Analytic Views
  • Modeling Considerations
  • Joins: Different types and when to use what.
  • Where Class Vs Constraint Filters
  • HANA Studio Preview(use with Caution)
  • Impact of Query Execution
  • Demo
  • Modeling Suggestions
  • Troubleshooting Modeling Issues
  • Export and Import Models
  • Analytics Option on HANA
  • HANA Reporting Layer & Connectivity Options
  • Reporting on HANA Clients
  • Reporting on HANA Open Interfaces
  • Prerequisites for reporting on SAP HANA
  • IMDB client installation
  • Setting up new connection
  • SAP Business Objects BI4.0:Overview & tool comparison
  • Analytical Reporting on HANA
  • Relational Reporting on HANA
  • Reporting on HANA Demo Included
  • Native Excel Interface via ODBO
  • SAP Business Object Analysis(Office Edition)
  • SAP Business Object Explorer
  • Semantic Layer Approach
  • IDT Vs Universe Designer
  • SAP BOBJ Web I
  • SAP BOBJ Xcelsius
  • SAP Crystal Reports
  • Enterprise Vs 2011
  • Front end tool reporting considerations on top of HANA
  • Troubleshooting common reporting issues


Module#3. Advanced Data Modeling with SQL Script


  • Modeling Overview 
  • Calculation View :Overview & Types 
  • SQL Script :Motivation 
  • SQL Script: Overview 
  • SQL Script Processing 
  • Data Type Extensions 
  • Scalar Data type 
  • Table type 
  • Functional Extension 
  • Concept 
  • Procedure 
  • Procedure Calls 
  • Implementing Functional logic 
  • Operators 
  • SQL Script/Built in Function 
  • Debugging and troubleshooting SQL Script 
  • Restrictions for SQL Statement


Module#4. Data Provisioning: Data Services and Sybase Replication


  • Data Provisioning :Overview 
  • Data Provision Options 
  • Trigger Based Replication 
  • ETL-Based Replication 
  • Log-Based Replication 
  • SAP Business Objects Data Services 4.0 and HANA 
  • ODP enabled Extractor Support in Data Services 4.0 
  • HANA and Data Service Process flow for SAP and non-SAP data 
  • How it works for SAP System 
  • How it works for Non-SAP System 
  • Advanced Data Service options 
  • Column tables creation 
  • Bulk loader options & configuration 
  • Bulk extracting options & configuration 
  • Log based replication overview 
  • Technical system landscape 
  • User administration 
  • Authorization 
  • Installing log based replication 
  • Updating the SAP host agent on source system 
  • Installing Sybase components 
  • Deploying the SAP HANA load controller and related components 
  • Configuring log based replication 
  • Configuring Sybase components 
  • Sybase replication server 
  • Enterprise connect data access(ECDA) 
  • Sybase replication agent 
  • Test Sybase components 
  • Configure SAP HANA load controller on SAP HANA system 
  • Initializing replication using SAP HANA system 
  • Initializing replication using SAP HANA load controller
  • Module#5. DATA PROVISIONING: SAP LANDSCAPE TRANSFORMATION (SLT)
  • Data provisioning overview 
  • SAP landscape transformation set-up 
  • Options for SLT landscape installation 
  • Post installation stem 
  • Concept of SLT replication 
  • Architecture and key building block 
  • Technical requirement and system set-up information for LT replication server 
  • Key benefits of LT replicating server 
  • Transformational capabilities 
  • Operations 
  • Security and user management in HANA 
  • Creation of users 
  • Creation of roles 
  • Assignment privileges to roles

 

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)