Featured Post

Python Logic to Find All Unique Pairs in an Array

Image
 Here's the Python logic for finding all unique pairs in an array that sum up to a target value. Python Unique Pair Problem Write a Python function that finds all unique pairs in an array whose sum equals a target value. Avoid duplicates in the result. For example: Input: arr = [2, 4, 3, 5, 7, 8, 9] , target = 9 Output: [(2, 7), (4, 5)] Hints Use a set for tracking seen numbers. Check for complements efficiently. Example def find_unique_pairs(arr, target):     """     Finds all unique pairs in the array that sum up to the target value.     Parameters:     arr (list): The input array of integers.     target (int): The target sum value.     Returns:     list: A list of unique pairs that sum to the target value.     """     seen = set()     pairs = set()     for num in arr:         complement = target - num         if complement in seen:...

Analytics on Fly - Read It

The basis for real-time analytics is to have all resources at disposal in the moment they are called for . So far, special materialized data structures, called cubes, have been created to efficiently serve analytical reports. Such cubes are based on a fixed number of dimensions along which analytical reports can define their result sets. Consequently, only a particular set of reports can be served by one cube. If other dimensions are needed, a new cube has to be created or existing ones have to be extended. In the worst case, a linear increase in the number of dimensions of a cube can result in an exponential growth of its storage requirements. Extending a cube can result in a deteriorating performance of those reports already using it. The decision to extend a cube or build a new one has to be considered carefully. 

In any case, a wide variety of cubes may be built during the lifetime of a system to serve reporting, thus increasing storage requirements and also maintenance efforts.

Instead of working with a predefined set of reports, business users should be able to formulate ad-hoc reports. Their playground should be the entire set of data the company owns, possibly including further data from external sources. Assuming a fast in-memory database, no more pre-computed materialized data structures are needed. As soon as changes to data are committed to the database, they will be visible for reporting. 

The preparation and conversion steps of data if still needed for reports are done during query execution and computations take place on the fly. Computation on the fly during reporting on the basis of cubes that do not store data, but only provide the interface for reporting, solves a problem that has existed up to now and allows for performance optimization of all analytical reports likewise

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)