Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

Efficient Data Storage: Exploring 5 Patterns to Handle a Variety of Data

Data is now a variety of patterns. Data is now more than just plain text, it can exist in various persistence-storage mechanisms, with Hadoop distributed file system (HDFS) being one of them.

The way data is ingested or the sources from which data is ingested affects the way data is stored. On the other hand, how the data is pushed further into the downstream systems or accessed by the data access layer decides how the data is to be stored.

Role of RDBMS

The need to store huge volumes of data has forced databases to follow new rules of data relationships and integrity that are different from those of relational database management systems (RDBMS). RDBMS follow the ACID rules of atomicity, consistency, isolation, and durability.

These rules make the database reliable to any user of the database. However, searching huge volumes of big data and retrieving data from them would take large amounts of time if all the ACID rules were enforced.
A typical scenario is when we search for a certain topic using Google. The search returns innumerable pages of data; however, only one page is visible or basically available (BA). 
The rest of the data is in a soft state (S) and is still being assembled by Google, though the user is not aware of it. By the time the user looks at the data on the first page, the rest of the data becomes eventually consistent (E). This phenomenon—basically available soft state and eventually consistent—is the rule followed by the big data databases, which are generally NoSQL databases following BASE properties.

Database theory suggests that any distributed NoSQL big database can satisfy only two properties predominantly and will have to relax standards on the third. 

The three properties are consistency, availability, and partition tolerance (CAP). This is the CAP theorem. 

Polyglot pattern: Multiple types of storage mechanisms—like RDBMS, file storage, CMS, OODBMS, NoSQL, and HDFS—co-exist in an enterprise to solve the big data problem.

The aforementioned paradigms of ACID, BASE, and CAP give rise to new big data storage patterns like below:
  • Façade pattern: HDFS serves as the intermittent Façade for the traditional DW systems. 
  • Lean pattern: HBase is indexed using only one column-family and only one column and unique row-key. 
  • NoSQL pattern: Traditional RDBMS systems are replaced by NoSQL alternatives to facilitate faster access and querying of big data.

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide