Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

15 Awesome Features Should Present in Big Data System

Really good post. I have given useful points on the features of big data system. If there are no right features, you will miss the benefits that you get from big data.

What does traditional BI tools....

Read next step...

Traditional tools quickly can become overwhelmed by the large volume of big data. Latency—the time it takes to access the data—is as an important a consideration as volume.

A little difference is there...

Suppose you might need to run an ad hoc query against the large data set or a predefined report.

A large data storage system is not a data warehouse, however, and it may not respond to queries in a few seconds. It is, rather, the organization-wide repository that stores all of its data and is the system that feeds into the data warehouses for management reporting.
Big data top components
Image courtesy|Stockphotos.io
Big data needs to be considered in terms of how the data will be manipulated. The size of the data set will impact data capture, movement, storage, processing, presentation, analytics, reporting, and latency.

Key features of Big data system
  1. A method of collecting and categorizing data
  2. A method of moving data into the system safely and without data loss
  3. A storage system that is distributed across many servers
  4. Is scalable to thousands of servers
  5. Will offer data redundancy and backup
  6. Will offer redundancy in case of hardware failure
  7. Will be cost-effective
  8. A rich tool set and community support
  9. A method of distributed system configuration
  10. Parallel data processing
  11. System-monitoring tools
  12. Reporting tools: ETL-like tools (preferably with a graphic interface) that can be used to build tasks that process the data and monitor their progress
  13. Scheduling tools to determine when tasks will run and show task status
  14. The ability to monitor data trends in real time
  15. Local processing where the data is stored to reduce network bandwidth usage 
Related Content: 13 Must Read Blogs in Data and Analytics

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide