Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Apache HIVE Top Features

Apache Hive aids the examination of great datasets kept in Hadoop’s HDFS and harmonious file setups such as the Amazon S3 filesystem.


Apache HIVE Top Features


It delivers an SQL-like lingo named when keeping complete aid aimed at map/reduce. To accelerate requests, it delivers guides, containing bitmap guides.

By preset, Hive stores metadata in an implanted Apache Derby database, and different client/server databases like MySQL may optionally be applied.

Currently, there are 4 file setups maintained in Hive, which are TEXTFILE, SEQUENCE FILE, ORC, and RCFILE.

Other attributes of Hive include:
  • Indexing to supply quickening, directory sort containing compacting, and Bitmap directory as of 0.10, further directory kinds are designed.
  • Different depository kinds such as simple written material, RCFile, HBase, ORC, and other ones.
  • Metadata depository in an RDBMS, notably decreasing the time to accomplish verbal examines throughout request implementation.
  • Operating on compressed information kept into the Hadoop environment, set of rules containing gzip, bzip2, snappy, etcetera.
  • Built-in exploiter described purposes (UDFs) to manipulate dates, cords, and different data-mining implements. Hive aids expanding the UDF set to cover use-cases not maintained by integrated purposes.
  • SQL-like requests (Hive QL), that are completely changed into map-reduce appointments.

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)