Featured Post

Python Set Operations Explained: From Theory to Real-Time Applications

Image
A  set  in Python is an unordered collection of unique elements. It is useful when storing distinct values and performing operations like union, intersection, or difference. Real-Time Example: Removing Duplicate Customer Emails in a Marketing Campaign Imagine you are working on an email marketing campaign for your company. You have a list of customer emails, but some are duplicated. Using a set , you can remove duplicates efficiently before sending emails. Code Example: # List of customer emails (some duplicates) customer_emails = [ "alice@example.com" , "bob@example.com" , "charlie@example.com" , "alice@example.com" , "david@example.com" , "bob@example.com" ] # Convert list to a set to remove duplicates unique_emails = set (customer_emails) # Convert back to a list (if needed) unique_email_list = list (unique_emails) # Print the unique emails print ( "Unique customer emails:" , unique_email_list) Ou...

Cloudera Impala top features useful for developers

Cloudera Impala that runs on Apache Hadoop. The program was proclaimed in October 2012 with a common beta trial dispersion. Popular usage is in data analytics.The key features useful for interviews.


Impala The Apache-licensed Impala program begets scalable collateral database techniques to Hadoop, authorizing consumers to subject low-latency SQL requests to information kept in HDFS and Apache HBase short of needing information motion either alteration.


Impala is amalgamated with Hadoop to employ the similar file and information setups, metadata, safeguarding and asset administration architectures applied by MapReduce, Apache Hive, Apache Pig and different Hadoop code.

Impala Applications

Impala is advanced for experts and information experts in science to accomplish systematic computational analysis of data or statistics on information kept in Hadoop through SQL either trade intellect implements. 

 
The effect is that extensive information handling (via MapReduce) and two-way requests may be completed on the similar configuration utilizing the similar information and metadata – eliminating the demand to wander information places in to specific setups and or exclusive setups plainly to accomplish examination. 


Features included
  • Supports HDFS#Hadoop_distributed_file_system|HDFS and Apache HBase storage
  • Reads Hadoop date setups, containing written material, LZO, SequenceFile, Avro and RCFile Supports Hadoop safeguarding (Kerberos authentication)
  • Fine-grained, Role-based allowance with Sentry Uses metadata, ODBC driver, and SQL structure as of Apache Hive

In first 2013, a column-oriented DBMS|column-oriented information setup named Parquet was proclaimed for designs containing Impala. In December 2013, Amazon Web Services proclaimed aid aimed at Impala.


Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

5 SQL Queries That Popularly Used in Data Analysis