Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

Essential features of Hadoop Data joins (1 of 2)

Limitation of map side joining: 

A record being processed by a mapper may be joined with a record not easily accessible (or even located) by that mapper. This is the main limitation.

Who will facilitate map side join:

Hadoop's apache.hadoop.mapred.join package contains helper classes to facilitate this map side join.

What is joining data in Hadoop:

You will come across, you need to analyze data from multiple sources, this scenario Hadoop follows data joining. In the case database world, joining of two or more tables is called joining. In Hadoop joining data involved different approaches.

Approaches:
  • Reduce side join
  • Replicated joins using a Distributed cache
  • Semijoin-Reduce side join with map side filtering
What is the functionality of Map-reduce job:

The traditional MapReduce job reads a set of input data, performs some transformations in the map phase, sorts the results, performs another transformation in the reduce phase, and writes a set of output data. The sorting stage requires data to be transferred across the network and also requires the computational expense of sorting. In addition, the input data is read from and the output data is written to HDFS. 

The overhead involved in passing data between HDFS and the map phase, and the overhead involved in moving the data during the sort stage, and the writing of data to HDFS at the end of the job result in application design patterns that have large complex map methods and potentially complex reduce methods, to minimize the number of times the data is passed through the cluster.

Many processes require multiple steps, some of which require a reduce phase, leaving at least one input to the next job step already sorted. Having to re-sort this data may use significant cluster resources. In my next post I will give different joining methods in Hadoop.

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide