Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Netezza tool real usage speeds up data analytics

The IBM Netezza data warehouse appliance is easy-to-use and dramatically accelerates the entire analytic process.

The programming interfaces and parallelization options make it straightforward to move a majority of analytics inside the appliance, regardless of whether they are being performed using tools from such vendors as IBM SPSS, SAS, or Revolution Analytics, or written in languages such as Java,Lua, Perl, Python, R or Fortran.

Additionally, IBM Netezza data warehouse appliances are delivered with a built-in library of parallelized analytic functions, purpose-built for large data volumes, to kick-start and accelerate any analytic application development and deployment.
The simplicity and ease of development is what truly sets IBM Netezza apart.

It is the first appliance of its kind – packing the power and scalability of hundreds of processing cores in an architecture ideally suited for parallel analytics.

Instead of a fragmented analytics infrastructure with multiple systems where data is replicated, IBM Netezza Analytics consolidates all analytics activity in a powerful appliance.

It is easy to deploy and requires minimal ongoing administration, for an overall low total cost of ownership.

Simplifying the process of exploring, calculating, modeling and scoring data are key drivers for successful adoption of analytics companywide. With IBM Netezza, business users

can run their own analytics in near real time, which helps analytics-backed, data-driven decisions to become pervasive throughout an enterprise.

What is Netezza (Ref: wiki)

Netezza (pronounced Ne-Tease-Ah) designs and markets high-performance data warehouse appliances and advanced analytics applications for uses including enterprise data warehousing, business intelligence, predictive analytics and business continuity planning.

Founded in 1999 by Foster Hinshaw, Netezza was purchased by IBM in 2010 for $1.7 billion. Netezza and Hinshaw are credited with creating the data warehouse appliance category to address consumer analytics efficiently by providing a modular, scalable, easy-to-manage database system that’s cost effective.

This class of machine is necessary to manage the "data-intense" workloads of modern analytics and discovery that are not well handled with legacy technologies, most of which are designed around traditional "computer-centric" workloads.

Netezza's implementation is characterized by:
(a) data-intelligent shared-nothing architecture, where the entire query is executed on the nodes with emphasis on minimizing data movement;
(b) use of commodity FPGA's to augment the CPU's and minimize network bus traffic; and
(c) embedded analytics at the storage level.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)