Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Old School Guide Data Analyst Responsibilities

The results of your analysis may be super meaningful and obvious to you, but they won’t be to anyone else. That’s because you know what questions you were looking to answer when you set out to do the analysis in the first place.


Your Role-You know exactly what data the dataset includes and excludes. Plus you wrote the queries that ultimately produced the visualization or report you’re looking at. That’s a lot of contexts that you need to share in order for other people to understand what the numbers mean.


Sharing Results-When sharing the results of your analysis, write out the conclusions you are drawing from the data and what business actions you think should be taken as a result of the analysis (e.g. our conversion decreased with this latest release and we should rollback). Not only do other folks perhaps not have the context to interpret the data correctly, they probably don’t find it as fascinating as you do and may not have the time to derive meaning from the data.




Communication Skills-Not to hammer on it too much, but communication skills are so important for this role. Around half of the analyst’s time needs to be spent on communications. It takes quite a bit of time to explain and summarize the results and conclusions you’ll draw from your data. 


If the results of your analysis are sleeping in people’s inboxes, you’re not doing it right. Sometimes you may be the only person in the organization who knows about a problem or opportunity, and it’s your responsibility to make sure the organization is responding appropriately to what you’ve learned. Sometimes you gotta be the squeaky wheel. Don’t underestimate the value of your work.


Your Time-If analysis work is something you repeatedly run out of time to do, try getting it added to your official job description and dedicating a certain number of hours per week or per month to it. Block it off on your calendar.


Data Value-You’s going to be collecting lots of interesting data, but it won’t be very valuable unless someone uses it! You’ll need at least one person on your team who is very curious about what that data might reveal. I call these people analysts. Very often the analyst is a developer, product manager, or someone on the product or marketing team.


Analytics-Not only will these folks be dying to see the results of the business questions they set out to answer, they will be continuously thinking up new questions. Analysts love digging into the data you collected in the first phase of the project and will have a lot of ideas of what new things you can collect in the next phase. 


In other words, you need people on your team who enjoy the practice of analytics. Skills-Don’t worry, there are lots of people out there who do:): Having a technical background will be a huge asset for this person as they will quickly learn how to build queries to get the results they need.


This role is absolutely critical for your success because if you don’t have people who want to learn from your data, you won’t be able to extract any value from it.


Related: 

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)