Featured Post

Python: Built-in Functions vs. For & If Loops – 5 Programs Explained

Image
Python’s built-in functions make coding fast and efficient. But understanding how they work under the hood is crucial to mastering Python. This post shows five Python tasks, each implemented in two ways: Using built-in functions Using for loops and if statements ✅ 1. Sum of a List ✅ Using Built-in Function: numbers = [ 10 , 20 , 30 , 40 ] total = sum (numbers) print ( "Sum:" , total) 🔁 Using For Loop: numbers = [ 10 , 20 , 30 , 40 ] total = 0 for num in numbers: total += num print ( "Sum:" , total) ✅ 2. Find Maximum Value ✅ Using Built-in Function: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = max (values) print ( "Max:" , maximum) 🔁 Using For and If: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = values[ 0 ] for val in values: if val > maximum: maximum = val print ( "Max:" , maximum) ✅ 3. Count Vowels in a String ✅ Using Built-ins: text = "hello world" vowel_count = sum ( 1 for ch in text if ch i...

R objects useful command to delete them

R-Commands
R-Commands
The entities that R creates and manipulates are known as objects. These may be variables, arrays of numbers, character strings, functions, or more general structures built from such components. During an R session, objects are created and stored by name. This post tells you how to delete them.

The R command
> objects()

(alternatively, ls()) can be used to display the names of (most of) the objects which are currently stored within R. The collection of objects currently stored is called the workspace. The data visualization in R Language with GGplot a good idea to start.

To remove objects the function rm is available:
> rm(x, y, z, ink, junk, temp, foo, bar)

All objects created during an R session can be stored permanently in a file for use in future R sessions.

At the end of each R session you are given the opportunity to save all the currently available objects. If you indicate that you want to do this, the objects are written to a file called .RData5 in the current directory, and the command lines used in the session are saved to a file called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from this file. At the same time the associated commands history is reloaded.
  • It is recommended that you should use separate working directories for analyses conducted  ith R. 
  • It is quite common for objects with names x and y to be created during an analysis. Names like this are often meaningful in the context of a single analysis, but it can be quite hard to decide what they might be when the several analyses have been conducted in the same directory.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)