Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index and the value in a loop, enumerate is a more Pyth

5 Top R Vs SAS Differences

Statistical analysis should know by every software engineer. R is an open source statistical programming language. SAS is licensed analysis suite for statistics. The two are very much popular in Machine learning and data analytics projects.


SAS is an Analysis-suite software and R is a programming language.

1. R Language

  1. R supports both statistical analysis and Graphics
  2. R is an open source project.
  3. R is 18th most popular Language
  4. R packages are written in C, C++, Java, Python and.Net
  5. R is popular in Machine learning, data mining and Statistical analysis projects.

a). R Advantages

  • R is flexible since a lot of packages are available.
  • R is best suited for data related projects and Machine learning.
  • Less cost since it is open source language.
  • R Studio is the best tool to develop R programming modules.
Ref: imartcus.org (read more advantages)

R vs SAS Read Today


b). R Disadvantages

  • R language architecture model is out of date. So may not use it for critical applications.
  • R is not suitable for Server programming, due to lack of security.
  • R code you cannot use in web browsers.

SAS

SAS is a statistical analysis suite. Developed to process data sets in mainframe computers. Later developed to support multi-platforms. Like Mainframe, Windows, and Linux, SAS has multiple products. SAS/ Base is very basic level. SAS is popular in data related projects.

a). SAS Advantages

  1. The data integration from any data source is faster in SAS.
  2. The licensed software suite, so you will get support from SAS organization for any issues.
  3. SAS has multiple products. Most popular in creating reports and statistical analysis.
  4. Best suited for data-oriented projects.

b). SAS Disadvantages

  1. Mining of text is hard in SAS.
  2. Graphical visualization is not present in SAS.
  3. SAS is not suitable for Machine learning projects.
  4. The SAS software is expensive.
  5. SAS studio is a useful tool to work on it.


References

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Python placeholder '_' Perfect Way to Use it