Featured Post

Python Set Operations Explained: From Theory to Real-Time Applications

Image
A  set  in Python is an unordered collection of unique elements. It is useful when storing distinct values and performing operations like union, intersection, or difference. Real-Time Example: Removing Duplicate Customer Emails in a Marketing Campaign Imagine you are working on an email marketing campaign for your company. You have a list of customer emails, but some are duplicated. Using a set , you can remove duplicates efficiently before sending emails. Code Example: # List of customer emails (some duplicates) customer_emails = [ "alice@example.com" , "bob@example.com" , "charlie@example.com" , "alice@example.com" , "david@example.com" , "bob@example.com" ] # Convert list to a set to remove duplicates unique_emails = set (customer_emails) # Convert back to a list (if needed) unique_email_list = list (unique_emails) # Print the unique emails print ( "Unique customer emails:" , unique_email_list) Ou...

Python Web data - How to Extract HTML Tags Easily

With BeautifulSoup you can extract HTML and XML tags easily that present in Web data. Here is the best example of how to remove these.


The prime step of text analytics is cleaning. You can remove HTML tags using BeautifulSoup parser. Check out Python Logic and removing HTML tags. When analyzing web data, consider the below examples for your projects.


Python Ideas to Remove HTML tags
Python Ideas to Remove HTML tags


How I Removed Using BeautifulSoup

  1. Import BeautifulSoup
  2. Python Logic to Remove HTML tags
  3. Before and after executing the code

1. Import BeautifulSoup

import BeautifulSoup from bs4


2. Python BeautifulSoup: How to Remove HTML Tags

from bs4 import BeautifulSoup

soup = BeautifulSoup("<!DOCTYPE html><html><body><h1>My First Heading</h1><p>My first paragraph.</p></body></html>")

text = soup.get_text()

print(text)


3. Before and After Run

Before the run see the below code.


You need to import BeautifulSoup for Text analytics
Before Executing the code


After Run the tags are parsed. The means in the output tags removed.

I have shared Python sample logic on how to remove HTML tags. Also, given the package name you need. It is a useful example for text analytics.
Result after executing the code

Bottom-line of Result

Below are the steps you need for HTML tags parsing:
  1. Reads input HTML data
  2. Removes HTML tags
  3. Prints only text data

Keep Reading

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

5 SQL Queries That Popularly Used in Data Analysis