Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Python Web data - How to Extract HTML Tags Easily

With BeautifulSoup you can extract HTML and XML tags easily that present in Web data. Here is the best example of how to remove these.


The prime step of text analytics is cleaning. You can remove HTML tags using BeautifulSoup parser. Check out Python Logic and removing HTML tags. When analyzing web data, consider the below examples for your projects.


Python Ideas to Remove HTML tags
Python Ideas to Remove HTML tags


How I Removed Using BeautifulSoup

  1. Import BeautifulSoup
  2. Python Logic to Remove HTML tags
  3. Before and after executing the code

1. Import BeautifulSoup

import BeautifulSoup from bs4


2. Python BeautifulSoup: How to Remove HTML Tags

from bs4 import BeautifulSoup

soup = BeautifulSoup("<!DOCTYPE html><html><body><h1>My First Heading</h1><p>My first paragraph.</p></body></html>")

text = soup.get_text()

print(text)


3. Before and After Run

Before the run see the below code.


You need to import BeautifulSoup for Text analytics
Before Executing the code


After Run the tags are parsed. The means in the output tags removed.

I have shared Python sample logic on how to remove HTML tags. Also, given the package name you need. It is a useful example for text analytics.
Result after executing the code

Bottom-line of Result

Below are the steps you need for HTML tags parsing:
  1. Reads input HTML data
  2. Removes HTML tags
  3. Prints only text data

Keep Reading

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)