Featured Post

How to Create a Symmetric Array in Python

Image
 Here's a Python program that says to write a Symmetric array transformation. A top interview question. Symmetric Array Transformation Problem: Write a Python function that transforms a given array into a symmetric array by mirroring it around its center. For example: Input: [1, 2, 3] Output: [1, 2, 3, 2, 1] Hints: Use slicing for the reverse part. Concatenate the original array with its mirrored part. Example def symmetric_array(arr):     """     Transforms the input array into a symmetric array by mirroring it around its center.     Parameters:     arr (list): The input array.     Returns:     list: The symmetric array.     """     # Mirror the array by concatenating the original with its reverse (excluding the last element to avoid duplication)     return arr + arr[-2::-1] # Example usage input_array = [1, 2, 3] symmetric_result = symmetric_array(input_array) print("Input Array:", input_arr...

5 HBase Vs. RDBMS Top Functional Differences

Here're the differences between RDBMS and HBase. HBase in the Big data context has a lot of benefits over RDBMS. The listed differences below make it understandable why HBASE is popular in Hadoop (or Bigdata) platform.

5 HBase Vs. RDBMS Top Functional Differences

5 HBase Vs. RDBMS Top Functional Differences


Here're the differences unlock now.

Random Accessing


HBase handles a large amount of data that is store in a distributed manner in the column-oriented format while RDBMS is systematic storage of a database that cannot support a random manner for accessing the database.

Database Rules


RDBMS strictly follows Codd's 12 rules with fixed schemas and row-oriented manner of database and also follows ACID properties.


HBase follows BASE properties and implements complex queries.
Secondary indexes, complex inner and outer joins, count, sum, sort, group, and data of page and table can easily be accessible by RDBMS.

Storage


From small to medium storage application there is the use of RDBMS that provides the solution with MySQL and PostgreSQL whose size increase with concurrency and performance. 


Codd's rules always need to keep in mind while extending the size of the database in the use of data processing.

Data Integrity


RDBMS focuses on and emphasizes consistency, referential integrity, abstraction from the physical layer, and complex queries through SQL language.

Takeaway

  • There is no single-point failure in HBASE. You always have backup data.
  • The server regions have the flexibility to share or rebalance the load among the servers.
  • Automatic partition helps to distribute its workload among servers. It happens with its in-built feature of HBASE.
  • The cost involved in the maintenance of HBASE is comparatively low.


Keep Reading

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)