Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

How to Monitor Kafka-stream's Performance

Kafka Streams API is a part of Kafka, it goes without saying that monitoring your application will require some monitoring of Kafka as well.

Performance


The consumer and producer performance is one of the fundamental performance concerns for a producer and consumer.
 

Stream performance


The Kafka data flow diagram



Kafka data flow diagram


What is lag


For producers, we care mostly about how fast the producer is sending messages to the broker. Obviously, the higher the throughput, the better.

For consumers, we’re also concerned with performance, or how fast we can read messages from a broker.

we care about how much and how fast our producers can publish to a broker, and we simultaneously care about how quickly our consumers can read those messages from the broker. The difference between how fast the producers place records on the broker and when consumers read those messages is called consumer lag


How to check consumer lag


To check for consumer lag, Kafka provides a convenient command-line tool, kafka-consumer-groups.sh, found in the <kafka-install-dir>/bin directory. The script has a few options, but here we’ll focus on the list and describe options. These two options will give you the information you need about consumer group performance.

List command

<kafka-install-dir>/bin/kafka-consumer-groups.sh \ --bootstrap-server localhost:9092 \ --list


Describe command

<kafka-install-dir>/bin/kafka-consumer-groups.sh \ --bootstrap-server localhost:9092 \ --group <GROUP-NAME> \ --describe


How to trace problem

  • A small lag or one that stays constant is OK, but a lag that continues to grow over time is an indication you’ll need to give your consumer more resources. 
  • For example, you might need to increase the partition count and hence increase the number of threads consuming from the topic. Or maybe your processing after reading the message is too heavyweight. After consuming a message, you could hand it off to an async queue, where another thread can pick up the message and do the processing.

Related

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide