Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Python Program: JSON to CSV Conversion

JavaScript object notion is also called JSON file, it's data you can write to a CSV file. Here's a sample python logic for your ready reference. 




You can write a simple python program by importing the JSON, and CSV packages. This is your first step. It is helpful to use all the JSON methods in your python logic. That means the required package is JSON.

So far, so good. In the next step, I'll show you how to write a Python program. You'll also find each term explained.


What is JSON File

JSON is key value pair file. The popular use of JSON file is to transmit data between heterogeneous applications. Python supports JSON file.


What is CSV File

The CSV is comma separated file. It is popularly used to send and receive data.


How to Write JSON file data to a CSV file

Here the JSON data that has written to CSV file. It's simple method and you can use for CSV file conversion use.

import csv, json

json_string = '[{"value1": 1, "value2": 2,"value3": 1.234}]'
data = json.loads(json_string)
headers = data[0].keys()

with open('sample.csv', 'w') as f:
writer = csv.DictWriter(f, fieldnames=headers)
writer.writeheader()
writer.writerows(data)


with open('sample.csv', 'r') as f:
    print(f)
    for row in f:
        print(row)

Output:

<_io.TextIOWrapper name='file.csv' mode='r' encoding='UTF-8'>
value1,value2,value3

1,2,1.234


** Process exited - Return Code: 0 **
Press Enter to exit terminal

Conclusion

The output CSV file has both headers and rows, and the data is comma seprated.


References

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)