Featured Post

Python Set Operations Explained: From Theory to Real-Time Applications

Image
A  set  in Python is an unordered collection of unique elements. It is useful when storing distinct values and performing operations like union, intersection, or difference. Real-Time Example: Removing Duplicate Customer Emails in a Marketing Campaign Imagine you are working on an email marketing campaign for your company. You have a list of customer emails, but some are duplicated. Using a set , you can remove duplicates efficiently before sending emails. Code Example: # List of customer emails (some duplicates) customer_emails = [ "alice@example.com" , "bob@example.com" , "charlie@example.com" , "alice@example.com" , "david@example.com" , "bob@example.com" ] # Convert list to a set to remove duplicates unique_emails = set (customer_emails) # Convert back to a list (if needed) unique_email_list = list (unique_emails) # Print the unique emails print ( "Unique customer emails:" , unique_email_list) Ou...

Python Program: JSON to CSV Conversion

JavaScript object notion is also called JSON file, it's data you can write to a CSV file. Here's a sample python logic for your ready reference. 




You can write a simple python program by importing the JSON, and CSV packages. This is your first step. It is helpful to use all the JSON methods in your python logic. That means the required package is JSON.

So far, so good. In the next step, I'll show you how to write a Python program. You'll also find each term explained.


What is JSON File

JSON is key value pair file. The popular use of JSON file is to transmit data between heterogeneous applications. Python supports JSON file.


What is CSV File

The CSV is comma separated file. It is popularly used to send and receive data.


How to Write JSON file data to a CSV file

Here the JSON data that has written to CSV file. It's simple method and you can use for CSV file conversion use.

import csv, json

json_string = '[{"value1": 1, "value2": 2,"value3": 1.234}]'
data = json.loads(json_string)
headers = data[0].keys()

with open('sample.csv', 'w') as f:
writer = csv.DictWriter(f, fieldnames=headers)
writer.writeheader()
writer.writerows(data)


with open('sample.csv', 'r') as f:
    print(f)
    for row in f:
        print(row)

Output:

<_io.TextIOWrapper name='file.csv' mode='r' encoding='UTF-8'>
value1,value2,value3

1,2,1.234


** Process exited - Return Code: 0 **
Press Enter to exit terminal

Conclusion

The output CSV file has both headers and rows, and the data is comma seprated.


References

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

5 SQL Queries That Popularly Used in Data Analysis