Featured Post

PowerCurve for Beginners: A Comprehensive Guide

Image
PowerCurve is a complete suite of decision-making solutions that help businesses make efficient, data-driven decisions. Whether you're new to PowerCurve or want to understand its core concepts, this guide will introduce you to chief features, applications, and benefits. What is PowerCurve? PowerCurve is a decision management software developed by Experian that allows organizations to automate and optimize decision-making processes. It leverages data analytics, machine learning, and business rules to provide actionable insights for risk assessment, customer management, fraud detection, and more. Key Features of PowerCurve Data Integration ā€“ PowerCurve integrates with multiple data sources, including internal databases, third-party data providers, and cloud-based platforms. Automated Decisioning ā€“ The platform automates decision-making processes based on predefined rules and predictive models. Machine Learning & AI ā€“ PowerCurve utilizes advanced analytics and AI-driven models ...

5 Python Pandas Tricky Examples for Data Analysis

Here are five tricky Python Pandas examples. These provide detailed insights to work with Pandas in Python,


Pandas examples

#1 Dealing with datetime data (parse_dates pandas example)


import pandas as pd

# Convert a column to datetime format

data['date_column'] = pd.to_datetime(data['date_column'])


# Extract components from datetime (e.g., year, month, day)

data['year'] = data['date_column'].dt.year

data['month'] = data['date_column'].dt.month


# Calculate the time difference between two datetime columns

data['time_diff'] = data['end_time'] - data['start_time']


#2 Working with text data

 

# Convert text to lowercase

data['text_column'] = data['text_column'].str.lower()


# Count the occurrences of specific words in a text column

data['word_count'] = data['text_column'].str.count('word')


# Extract information using regular expressions

data['extracted_info'] = data['text_column'].str.extract(r'(\d+)')


#3 Handling large datasets efficiently


# Read a large dataset in chunks

chunk_size = 100000

data_chunks = pd.read_csv('large_data.csv', chunksize=chunk_size)

# Process data in chunks

for chunk in data_chunks:

    # Perform calculations or manipulations on each chunk


# Append data from multiple files

file_list = ['file1.csv', 'file2.csv', 'file3.csv']

combined_data = pd.concat([pd.read_csv(file) for file in file_list])


#4 Pivot tables and reshaping data


# Create a pivot table

pivot_table = data.pivot_table(values='column2', index='column1', columns='column3', aggfunc='mean')


# Unstack a multi-index DataFrame

unstacked_data = pivot_table.unstack().reset_index()


# Melt a DataFrame from wide to long format

melted_data = pd.melt(data, id_vars=['id'], value_vars=['var1', 'var2'], var_name='variable', value_name='value')


#5 Efficient memory usage


# Optimize memory usage of DataFrame columns

data['numeric_column'] = pd.to_numeric(data['numeric_column'], downcast='integer')

data['category_column'] = data['category_column'].astype('category')


# Load a subset of columns from a large dataset

selected_columns = ['column1', 'column2', 'column3']

data_subset = pd.read_csv('large_data.csv', usecols=selected_columns)


These examples demonstrate more advanced techniques for handling datetime data, text data, large datasets, reshaping data, and optimizing memory usage. They highlight some of the powerful features that pandas provide for complex data analysis tasks.


Related

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)