Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

How to Handle Spaces in PySpark Dataframe Column

In PySpark, you can employ SQL queries by importing your CSV file data to a DataFrame. However, you might face problems when dealing with spaces in column names of the DataFrame. Fortunately, there is a solution available to resolve this issue.


SQL Space in Column Names


Reading CSV file to Dataframe

Here is the PySpark code for reading CSV files and writing to a DataFrame.

#initiate session
spark = SparkSession.builder \
.appName("PySpark Tutorial") \
.getOrCreate()


#Read CSV file to df dataframe
data_path = '/content/Test1.csv'
df = spark.read.csv(data_path, header=True, inferSchema=True)

#Create a Temporary view for the DataFrame
df2.createOrReplaceTempView("temp_table")

#Read data from the temporary view
spark.sql("select * from temp_table").show()


Output
--------+-----+---------------+---+
|Student| Year|Semester1|Semester2|
| ID | | Marks | Marks |
+----------+-----+---------------+ | si1 |year1|62.08| 62.4| | si1 |year2|75.94| 76.75| | si2 |year1|68.26| 72.95| | si2 |year2|85.49| 75.8| | si3 |year1|75.08| 79.84| | si3 |year2|54.98| 87.72| | si4 |year1|50.03| 66.85| | si4 |year2|71.26| 69.77| | si5 |year1|52.74| 76.27| | si5 |year2|50.39| 68.58| | si6 |year1|74.86| 60.8| | si6 |year2|58.29| 62.38| | si7 |year1|63.95| 74.51| | si7 |year2|66.69| 56.92| +----------+-----+-------------+

Fix for space in the column name


Suppose the column name "Student ID" contains a space. To prevent errors, you must modify your SQL query.

spark.sql("select `Student ID` as sid from temp_table").show()

Output:

+---+ |sid| +---+ |si1| |si1| |si2| |si2| |si3| |si3| |si4| |si4| |si5| |si5| |si6| |si6| |si7| |si7| +---+


Related

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)