Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

How to Fill Nulls in Pandas: bfill and ffill

In Pandas, bfill and ffill are two important methods used for filling missing values in a DataFrame or Series by propagating the previous (forward fill) or next (backward fill) valid values respectively. These methods are particularly useful when dealing with time series data or other ordered data where missing values need to be filled based on the available adjacent values.


Bfill and Ffill methods


ffill (forward fill):

When you use the ffill method on a DataFrame or Series, it fills missing values with the previous non-null value in the same column. It propagates the last known value forward.

This method is often used to carry forward the last observed value for a specific column, making it a good choice for time series data when the assumption is that the value doesn't change abruptly.

Example:


import pandas as pd


data = {'A': [1, 2, None, 4, None, 6],

        'B': [None, 'X', 'Y', None, 'Z', 'W']}


df = pd.DataFrame(data)

print(df)

# Output:

#      A     B

# 0  1.0  None

# 1  2.0     X

# 2  NaN     Y

# 3  4.0  None

# 4  NaN     Z

# 5  6.0     W


# Forward fill missing values

df_filled = df.ffill()

print(df_filled)

# Output:

#      A     B

# 0  1.0  None

# 1  2.0     X

# 2  2.0     Y

# 3  4.0     Y

# 4  4.0     Z

# 5  6.0     W


bfill (backward fill):

The bfill method fills missing values with the next non-null value in the same column. It propagates the next known value backward.

Like ffill, this method can be useful in time series data, especially when values are missing at the beginning of the dataset.

Example:


import pandas as pd


data = {'A': [None, 2, None, 4, 5, None],

        'B': ['X', 'Y', None, None, 'Z', None]}


df = pd.DataFrame(data)

print(df)

# Output:

#      A     B

# 0  NaN     X

# 1  2.0     Y

# 2  NaN  None

# 3  4.0  None

# 4  5.0     Z

# 5  NaN  None


# Backward fill missing values

df_filled = df.bfill()

print(df_filled)

# Output:

#      A     B

# 0  2.0     X

# 1  2.0     Y

# 2  4.0  None

# 3  4.0     Z

# 4  5.0     Z

# 5  NaN  None

These methods can be very useful for handling missing data when the order of the data is important, such as in time series analysis.

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)