Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

A Beginner's Guide to Pandas Project for Immediate Practice

Pandas is a powerful data manipulation and analysis library in Python that provides a wide range of functions and tools to work with structured data. Whether you are a data scientist, analyst, or just a curious learner, Pandas can help you efficiently handle and analyze data. 


Simple project for practice


In this blog post, we will walk through a step-by-step guide on how to start a Pandas project from scratch. By following these steps, you will be able to import data, explore and manipulate it, perform calculations and transformations, and save the results for further analysis. So let's dive into the world of Pandas and get started with your own project!


Simple Pandas project

Import the necessary libraries:


import pandas as pd

import numpy as np


Read data from a file into a Pandas DataFrame:


df = pd.read_csv('/path/to/file.csv')

Explore and manipulate the data:


View the first few rows of the DataFrame:


print(df.head())


Access specific columns or rows in the DataFrame:


print(df['column_name'])

print(df.iloc[row_index])


Iterate through the DataFrame rows:


for index, row in df.iterrows():

    print(index, row)


Sort the DataFrame by one or more columns:


df_sorted = df.sort_values(['column1', 'column2'], ascending=[True, False])


Perform calculations and transformations on the data:


df['new_column'] = df['column1'] + df['column2']


Save the manipulated data to a new file:

df.to_csv('/path/to/new_file.csv', index=False)

Remember to adjust the file paths and column names based on your project requirements. These steps provide a basic starting point for a Pandas project and can be expanded upon depending on the specific task or analysis you're working on.


Data sources for CSV files

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)