Featured Post

Mastering flat_map in Python with List Comprehension

Image
Introduction In Python, when working with nested lists or iterables, one common challenge is flattening them into a single list while applying transformations. Many programming languages provide a built-in flatMap function, but Python does not have an explicit flat_map method. However, Python’s powerful list comprehensions offer an elegant way to achieve the same functionality. This article examines implementation behavior using Python’s list comprehensions and other methods. What is flat_map ? Functional programming  flatMap is a combination of map and flatten . It transforms the collection's element and flattens the resulting nested structure into a single sequence. For example, given a list of lists, flat_map applies a function to each sublist and returns a single flattened list. Example in a Functional Programming Language: List(List(1, 2), List(3, 4)).flatMap(x => x.map(_ * 2)) // Output: List(2, 4, 6, 8) Implementing flat_map in Python Using List Comprehension Python’...

How to Deal With Missing Data: Pandas Fillna() and Dropna()

Here are the best examples of Pandas fillna(), dropna() and sum() methods. We have explained the process in two steps - Counting and Replacing the Null values.


Check and Replace Column Nulls


Count Nulls

## count null values column-wise

null_counts = df.isnull().sum()


print(null_counts)

```


Output:

```

Column1    1

Column2    1

Column3    5

dtype: int64

```

In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise:


```

df.isnull().sum()

```


##Code snippet to count null values row-wise:


```

df.isnull().sum(axis=1)

```


In the above code, `df` is the Pandas DataFrame for which you want to count the null values. The `isnull()` function returns a DataFrame with the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. 

The `sum()` function is then applied to the resulting DataFrame to count the number of null values.

Fill null values with zeros in Pandas


```

import pandas as pd


# create a sample dataframe

data = {'Column1': [1, 2, 3, 4, None],

        'Column2': ['A', 'B', None, 'C', 'D'],

        'Column3': [None, None, None, None, None]}

df = pd.DataFrame(data)


Fill Nulls

To fill null values with '0' in Pandas DataFrame, you can use the `fillna()` function. Here's an example code snippet to do this:


```

import pandas as pd


# create a sample dataframe

data = {'Column1': [1, 2, 3, 4, None],

        'Column2': ['A', 'B', None, 'C', 'D'],

        'Column3': [None, None, None, None, None]}

df = pd.DataFrame(data)


# fill null values with 0

df.fillna(0, inplace=True)


print(df)

```


Output:


```

   Column1 Column2  Column3

0      1.0      A      0.0

1      2.0      B      0.0

2      3.0      0      0.0

3      4.0      C      0.0

4      0.0      D      0.0

```

In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then we use the `fillna()` function to replace all null values in the DataFrame with '0'. The `inplace=True` parameter ensures that the original DataFrame is modified and not a copy. Finally, we print the modified DataFrame with null values filled with '0'.


Note that the `axis` parameter is set to 0 by default in the `sum()` function, which means that it counts null values column-wise. To count null values row-wise, you need to set `axis` to 1.


Drop Nulls


df.dropna() 

It drops rows with any columns having the Nulls.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Big Data: Top Cloud Computing Interview Questions (1 of 4)

5 SQL Queries That Popularly Used in Data Analysis