Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

SQL Query: 3 Methods for Calculating Cumulative SUM

SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences.

Top 3 Queries to Calculate Cumulative SUM


Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle)


SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum 

FROM your_table;

This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column.


Using Subqueries (e.g., MySQL, SQLite):


SELECT t1.id, t1.value, SUM(t2.value) AS cumulative_sum

FROM your_table t1

JOIN your_table t2 ON t1.id >= t2.id

GROUP BY t1.id, t1.value

ORDER BY t1.id;


This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than or equal to the id in the second table. It then calculates the sum of the value column for each group of rows with the same ID from the first table.


Using Correlated Subqueries (e.g., MySQL, SQLite):


SELECT id, value, (

    SELECT SUM(value) 

    FROM your_table t2 

    WHERE t2.id <= t1.id

) AS cumulative_sum

FROM your_table t1

ORDER BY id;


This query uses a correlated subquery to calculate the cumulative sum. For each row in the main query, it calculates the sum of the value column for all rows with an id less than or equal to the id of the current row.

Comments

Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

Big Data: Top Cloud Computing Interview Questions (1 of 4)