Featured Post

PowerCurve for Beginners: A Comprehensive Guide

Image
PowerCurve is a complete suite of decision-making solutions that help businesses make efficient, data-driven decisions. Whether you're new to PowerCurve or want to understand its core concepts, this guide will introduce you to chief features, applications, and benefits. What is PowerCurve? PowerCurve is a decision management software developed by Experian that allows organizations to automate and optimize decision-making processes. It leverages data analytics, machine learning, and business rules to provide actionable insights for risk assessment, customer management, fraud detection, and more. Key Features of PowerCurve Data Integration – PowerCurve integrates with multiple data sources, including internal databases, third-party data providers, and cloud-based platforms. Automated Decisioning – The platform automates decision-making processes based on predefined rules and predictive models. Machine Learning & AI – PowerCurve utilizes advanced analytics and AI-driven models ...

Python map() and lambda() Use Cases and Examples

 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work.

Python map and lambda


Python map and lambda top use cases

1. Using map() with lambda

The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list).

Example: Doubling Numbers


numbers = [1, 2, 3, 4, 5] doubled = list(map(lambda x: x * 2, numbers)) print(doubled) # Output: [2, 4, 6, 8, 10]

2. Using map() to Convert Data Types

Example: Converting Strings to Integers


string_numbers = ["1", "2", "3", "4", "5"] integers = list(map(lambda x: int(x), string_numbers)) print(integers) # Output: [1, 2, 3, 4, 5]

3. Using map() with Multiple Iterables

You can also use map() with more than one iterable. The lambda function can take multiple arguments.

Example: Adding Two Lists Element-wise


list1 = [1, 2, 3] list2 = [4, 5, 6] summed = list(map(lambda x, y: x + y, list1, list2)) print(summed) # Output: [5, 7, 9]

4. Using map() with Custom Functions

You can define a regular function and use it with map().

Example: Squaring Numbers


def square(x): return x ** 2 numbers = [1, 2, 3, 4, 5] squared = list(map(square, numbers)) print(squared) # Output: [1, 4, 9, 16, 25]

5. Combining filter() and map()

You can combine filter() and map() to process data in a pipeline.

Example: Squaring Even Numbers


numbers = [1, 2, 3, 4, 5] squared_evens = list(map(lambda x: x ** 2, filter(lambda x: x % 2 == 0, numbers))) print(squared_evens) # Output: [4, 16]

Summary

  • map() applies a function to each item in an iterable.
  • lambda allows you to define small, anonymous functions in line.
  • They can be combined for concise and expressive transformations of data.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)