Featured Post

Claude Code for Beginners: Step-by-Step AI Coding Tutorial

Image
 Artificial Intelligence is changing how developers write software. From generating code to fixing bugs and explaining complex logic, AI tools are becoming everyday companions for programmers. One such powerful tool is Claude Code , powered by Anthropic’s Claude AI model. If you’re a beginner or  an experienced developer looking to improve productivity, this guide will help you understand  what Claude Code is, how it works, and how to use it step-by-step . Let’s get started. What is Claude Code? Claude Code is an AI-powered coding assistant built on top of Anthropic’s Claude models. It helps developers by: Writing code from natural language prompts Explaining existing code Debugging errors Refactoring code for better readability Generating tests and documentation In simple words, you describe what you want in plain English, and Claude Code helps turn that into working code. It supports multiple programming languages, such as: Python JavaScri...

Python map() and lambda() Use Cases and Examples

 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work.

Python map and lambda


Python map and lambda top use cases

1. Using map() with lambda

The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list).

Example: Doubling Numbers


numbers = [1, 2, 3, 4, 5] doubled = list(map(lambda x: x * 2, numbers)) print(doubled) # Output: [2, 4, 6, 8, 10]

2. Using map() to Convert Data Types

Example: Converting Strings to Integers


string_numbers = ["1", "2", "3", "4", "5"] integers = list(map(lambda x: int(x), string_numbers)) print(integers) # Output: [1, 2, 3, 4, 5]

3. Using map() with Multiple Iterables

You can also use map() with more than one iterable. The lambda function can take multiple arguments.

Example: Adding Two Lists Element-wise


list1 = [1, 2, 3] list2 = [4, 5, 6] summed = list(map(lambda x, y: x + y, list1, list2)) print(summed) # Output: [5, 7, 9]

4. Using map() with Custom Functions

You can define a regular function and use it with map().

Example: Squaring Numbers


def square(x): return x ** 2 numbers = [1, 2, 3, 4, 5] squared = list(map(square, numbers)) print(squared) # Output: [1, 4, 9, 16, 25]

5. Combining filter() and map()

You can combine filter() and map() to process data in a pipeline.

Example: Squaring Even Numbers


numbers = [1, 2, 3, 4, 5] squared_evens = list(map(lambda x: x ** 2, filter(lambda x: x % 2 == 0, numbers))) print(squared_evens) # Output: [4, 16]

Summary

  • map() applies a function to each item in an iterable.
  • lambda allows you to define small, anonymous functions in line.
  • They can be combined for concise and expressive transformations of data.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Step-by-Step Guide to Reading Different Files in Python

5 SQL Queries That Popularly Used in Data Analysis