Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

Python Logic to Find All Unique Pairs in an Array

 Here's the Python logic for finding all unique pairs in an array that sum up to a target value.

Unique pairs in an array


Python Unique Pair

Problem


Write a Python function that finds all unique pairs in an array whose sum equals a target value. Avoid duplicates in the result. For example:

  • Input: arr = [2, 4, 3, 5, 7, 8, 9], target = 9
  • Output: [(2, 7), (4, 5)]

Hints

  • Use a set for tracking seen numbers.
  • Check for complements efficiently.

Example

def find_unique_pairs(arr, target):

    """

    Finds all unique pairs in the array that sum up to the target value.


    Parameters:

    arr (list): The input array of integers.

    target (int): The target sum value.


    Returns:

    list: A list of unique pairs that sum to the target value.

    """

    seen = set()

    pairs = set()


    for num in arr:

        complement = target - num

        if complement in seen:

            # Add the pair in sorted order to avoid duplicates

            pairs.add(tuple(sorted((num, complement))))

        seen.add(num)

    

    return list(pairs)


# Example usage

input_array = [2, 4, 3, 5, 7, 8, 9]

target_sum = 9

result = find_unique_pairs(input_array, target_sum)

print("Input Array:", input_array)

print("Target Sum:", target_sum)

print("Unique Pairs:", result)


Output:

For the input array [2, 4, 3, 5, 7, 8, 9] and target 9, the output will be:


Input Array: [2, 4, 3, 5, 7, 8, 9] Target Sum: 9 Unique Pairs: [(4, 5), (2, 7)]

Explanation:

  1. Tracking Seen Elements (seen Set):

    • Store numbers already processed in a set.
    • This helps in quickly checking if the complement (i.e., target - num) exists.
  2. Avoiding Duplicate Pairs (pairs Set):

    • Pairs are stored in a set to automatically handle duplicate pairs.
    • Each pair is added as a sorted tuple to maintain consistency (e.g., (2, 7) and (7, 2) are treated as the same).
  3. Conversion to List:

    • The result is converted to a list for output.


Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide