Posts

Showing posts with the label Columnar database

Featured Post

Python: Built-in Functions vs. For & If Loops – 5 Programs Explained

Image
Python’s built-in functions make coding fast and efficient. But understanding how they work under the hood is crucial to mastering Python. This post shows five Python tasks, each implemented in two ways: Using built-in functions Using for loops and if statements ✅ 1. Sum of a List ✅ Using Built-in Function: numbers = [ 10 , 20 , 30 , 40 ] total = sum (numbers) print ( "Sum:" , total) 🔁 Using For Loop: numbers = [ 10 , 20 , 30 , 40 ] total = 0 for num in numbers: total += num print ( "Sum:" , total) ✅ 2. Find Maximum Value ✅ Using Built-in Function: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = max (values) print ( "Max:" , maximum) 🔁 Using For and If: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = values[ 0 ] for val in values: if val > maximum: maximum = val print ( "Max:" , maximum) ✅ 3. Count Vowels in a String ✅ Using Built-ins: text = "hello world" vowel_count = sum ( 1 for ch in text if ch i...

6 Advantages of Columnar Databases over Traditional RDBMS

Image
In traditional RDBMS, when a data source is accessed by multi users at single time, then database will go into deadlock state. One of the advantages of a columnar model is that if two or more users want to use a different subset of columns, they do not have to lock out each other.         (Superior benefits for NoSQL Jobs) This design is made easier because of a disk storage method known as RAID (redundant array of independent disks, originally redundant array of inexpensive disks), which combines multiple disk drives into a logical unit. Data is stored in several patterns called levels that have different amounts of redundancy. The idea of the redundancy is that when one drive fails, the other drives can take over. When a replacement disk drive in put in the array, the data is replicated from the other disks in the array and the system is restored. The following are the various levels of RAID: RAID 0 (block-level striping without parity or mirroring) ...