Posts

Showing posts with the label Cumulative SUM

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index ...

SQL Query: 3 Methods for Calculating Cumulative SUM

Image
SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences. Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle) SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum  FROM your_table; This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column. Using Subqueries (e.g., MySQL, SQLite): SELECT t1.id, t1.value, SUM(t2.value) AS cumulative_sum FROM your_table t1 JOIN your_table t2 ON t1.id >= t2.id GROUP BY t1.id, t1.value ORDER BY t1.id; This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than...