Posts

Showing posts with the label ETL

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

How to Write ETL Logic in Python: Sample Code to Practice

Image
Here's an example Python code that uses the mysql-connector library to connect to a MySQL database, extract data from a table, transform it, and load it as a JSON file. Here's an example: Python ETL Sample Code import mysql.connector import json # Connect to the MySQL database cnx = mysql.connector.connect(user='username', password='password',                               host='localhost',                               database='database_name') # Define a cursor to execute SQL queries cursor = cnx.cursor() # Define the SQL query to extract data query = ("SELECT column1, column2, column3 FROM table_name") # Execute the SQL query cursor.execute(query) # Fetch all rows from the result set rows = cursor.fetchall() # Transform the rows into a list of dictionaries result = [] for row in rows:     result.append({'column1': row[0], 'col...

Top features of HPCC -High performance Computing Cluster

Image
[Hadoop Jobs] HPCC (High-Performance Computing Cluster) was elaborated and executed by LexisNexis Risk Solutions. The creation of this data processing program started in 1999 and applications remained in manufacture by belated 2000.  The HPCC style as well uses product arrays of equipment operating the Linux Operating System. Custom configuration code and Middleware parts remained elaborated and layered on the center Linux Operating System to supply the implementation ecosystem and dispersed filesystem aid needed for data-intensive data processing. LexisNexis as well executed a spic-and-span high-level lingo for data-intensive data processing. The ECL (data-centric program design language)|ECL program design lingo is a high-level, declarative, data-centric, Implicit parallelism|implicitly collateral lingo that permits the software coder to determine what the information handling effect ought to be and the dataflows and transformations that are required to attain the e...

The story Hadoop data value less in cost than ETL

Image
Traditional data warehouse That isn’t to say that Hadoop can’t be used for structured data that is readily available in a raw format; because it can.In addition, when you consider where data should be stored, you need to understand how data is stored today and what features characterize your persistence options.  Consider your experience with storing data in a traditional data warehouse. Typically, this data goes through a lot of rigor to make it into the warehouse.  Builders and consumers of warehouses have it etched in their minds that the data they are looking at in their warehouses must shine with respect to quality; subsequently, it’s cleaned up via cleansing, enrichment, matching, glossary, metadata, master data management, modeling, and other services before it’s ready for analysis.  Obviously, this can be an expensive process. Because of that expense, it’s clear that the data that lands in the warehouse is deemed not just of high value, but it has a bro...