Posts

Showing posts with the label Information

Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Understand Data power why quality everyone wants

Information and data quality is new service work for data intense companies. I have seen not only in Analytics projects but in Mainframe projects, there is the Data Quality team. How incorrect data impact on us Information quality problems and their impact are all around us: A customer does not receive an order because of incorrect shipping information. Products are sold below cost because of wrong discount rates. A manufacturing line is stopped because parts were not ordered—the result of inaccurate inventory information. A well-known U.S. senator is stopped at an airport (twice) because his name is on a government "Do not fly" list. Many communities cannot run an election with results that people trust. Financial reform has created new legislation such as Sarbanes—Oxley.  Incorrect data leads to many problems. The role of Data Science is to use quality data for effective decisions. What is information Information is not simply data, strings of numbers, lis...