Posts

Showing posts with the label Information

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Understand Data power why quality everyone wants

Information and data quality is new service work for data intense companies. I have seen not only in Analytics projects but in Mainframe projects, there is the Data Quality team. How incorrect data impact on us Information quality problems and their impact are all around us: A customer does not receive an order because of incorrect shipping information. Products are sold below cost because of wrong discount rates. A manufacturing line is stopped because parts were not ordered—the result of inaccurate inventory information. A well-known U.S. senator is stopped at an airport (twice) because his name is on a government "Do not fly" list. Many communities cannot run an election with results that people trust. Financial reform has created new legislation such as Sarbanes—Oxley.  Incorrect data leads to many problems. The role of Data Science is to use quality data for effective decisions. What is information Information is not simply data, strings of numbers, lis...