Posts

Showing posts with the label PySpark

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index and the value in a loop, enumerate is a more Pyth

AWS CLI PySpark a Beginner's Comprehensive Guide

Image
AWS (Amazon Web Services) and PySpark are separate technologies, but they can be used together for certain purposes. Let me provide you with a beginner's guide for both AWS and PySpark separately. AWS (Amazon Web Services): Amazon Web Services (AWS) is a cloud computing platform that offers a wide range of services for computing power, storage, databases, machine learning, analytics, and more. 1. Create an AWS Account: Go to the AWS homepage. Click on "Create an AWS Account" and follow the instructions. 2. Set Up AWS CLI: Install the AWS Command Line Interface (AWS CLI) on your local machine. Configure it with your AWS credentials using AWS configure. 3. Explore AWS Services: AWS provides a variety of services. Familiarize yourself with core services like EC2 (Elastic Compute Cloud), S3 (Simple Storage Service), and IAM (Identity and Access Management). PySpark: PySpark is the Python API for Apache Spark, a fast and general-purpose cluster computing system. It allows you

How to Handle Spaces in PySpark Dataframe Column

Image
In PySpark, you can employ SQL queries by importing your CSV file data to a DataFrame. However, you might face problems when dealing with spaces in column names of the DataFrame. Fortunately, there is a solution available to resolve this issue. Reading CSV file to Dataframe Here is the PySpark code for reading CSV files and writing to a DataFrame. #initiate session spark = SparkSession.builder \ .appName("PySpark Tutorial") \ .getOrCreate() #Read CSV file to df dataframe data_path = '/content/Test1.csv' df = spark.read.csv(data_path, header=True, inferSchema=True) #Create a Temporary view for the DataFrame df2.createOrReplaceTempView("temp_table") #Read data from the temporary view spark.sql("select * from temp_table").show() Output --------+-----+---------------+---+ |Student| Year|Semester1|Semester2| | ID | | Marks | Marks | +----------+-----+---------------+ | si1 |year1|62.08| 62.4| | si1 |year2|75.94| 76.75| | si