Posts

Showing posts with the label Python CSV Files

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

How to Read CSV file Data in Python

Image
Here is a way to read  CSV files  in Python pandas. The packages you need to import are numpy and pandas. On the flip side, f or Text files, you don't need to import these special libraries since python by default support it. Python pandas read_csv >>> import numpy as np >>> import pandas as pd To see how pandas handle this kind of data, we'll create a small CSV file in the working directory as ch05_01.csv. white, red, blue, green, animal 1,5,2,3,cat  2,7,8,5,dog  3,3,6,7,horse  2,2,8,3,duck  4,4,2,1,mouse Since this file is comma-delimited , you can use the read_csv() function to read its content and convert it to a dataframe object. >>> csvframe = pd.read_csv('ch05_01.csv') >>> csvframe white red blue green animal 0 1 5 2 3 cat 1 2 7 8 5 dog 2 3 3 6 7 horse 3 2 2 8 3 duck 4 4 4 2 1 mouse Python reading text files Sinc...