Posts

Showing posts with the label Set Opertation

Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Python Set Operations Explained: From Theory to Real-Time Applications

Image
A  set  in Python is an unordered collection of unique elements. It is useful when storing distinct values and performing operations like union, intersection, or difference. Real-Time Example: Removing Duplicate Customer Emails in a Marketing Campaign Imagine you are working on an email marketing campaign for your company. You have a list of customer emails, but some are duplicated. Using a set , you can remove duplicates efficiently before sending emails. Code Example: # List of customer emails (some duplicates) customer_emails = [ "alice@example.com" , "bob@example.com" , "charlie@example.com" , "alice@example.com" , "david@example.com" , "bob@example.com" ] # Convert list to a set to remove duplicates unique_emails = set (customer_emails) # Convert back to a list (if needed) unique_email_list = list (unique_emails) # Print the unique emails print ( "Unique customer emails:" , unique_email_list) Ou...