Posts

Showing posts with the label Sets

Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Sets Vs Lists Python Programmer Tips

Image
Sets are only useful when trying to ensure unique items are preserved. Before sets were available, it was common to process items and check if they exist in a list (or dictionary) before adding them. List example Here unique is an empty list. Every time I compare with this list, and if it is not duplicated then the input item will append to the unique list.  >>> unique = []  >>> for name in ['srini', 'srini', 'rao', 'srini']:  ... if name not in unique:  ... unique.append(name)  ... >>> unique ['srini', 'rao'] There is no need to do this when using sets. Instead of appending you add to a set: Set example >>> for name in ['srini', 'srini', 'rao', 'srini']: ... unique.add(name)  ...  >>> unique {'srini', 'rao'} Just like tuples and lists, interacting with sets have some differences on how to access their items. You can't index them like lists an...