Posts

Showing posts with the label Spark SQL

Featured Post

PowerCurve for Beginners: A Comprehensive Guide

Image
PowerCurve is a complete suite of decision-making solutions that help businesses make efficient, data-driven decisions. Whether you're new to PowerCurve or want to understand its core concepts, this guide will introduce you to chief features, applications, and benefits. What is PowerCurve? PowerCurve is a decision management software developed by Experian that allows organizations to automate and optimize decision-making processes. It leverages data analytics, machine learning, and business rules to provide actionable insights for risk assessment, customer management, fraud detection, and more. Key Features of PowerCurve Data Integration – PowerCurve integrates with multiple data sources, including internal databases, third-party data providers, and cloud-based platforms. Automated Decisioning – The platform automates decision-making processes based on predefined rules and predictive models. Machine Learning & AI – PowerCurve utilizes advanced analytics and AI-driven models ...

Spark SQL Query how to write it in Ten steps

Image
Spark SQL example The post tells how to write SQL query in Spark and explained in ten steps.This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the tables into two DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table. 1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS: $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs where HUE_HOME defaultsto /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue (package installation). 2. Start spark-shell: $ spark-shell 3. Create Hive tables sample_07 and sample_08: scala> sqlContext.sql("CREATE TABLE sample_07 (code string...