Posts

Showing posts with the label Spark SQL

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Spark SQL Query how to write it in Ten steps

Image
Spark SQL example The post tells how to write SQL query in Spark and explained in ten steps.This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the tables into two DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table. 1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS: $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs where HUE_HOME defaultsto /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue (package installation). 2. Start spark-shell: $ spark-shell 3. Create Hive tables sample_07 and sample_08: scala> sqlContext.sql("CREATE TABLE sample_07 (code string...