Posts

Showing posts with the label Text Analytics

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index ...

Python Web data - How to Extract HTML Tags Easily

Image
With BeautifulSoup you can extract HTML and XML tags easily that present in Web data. Here is the best example of how to remove these. The prime step of text analytics is cleaning . You can remove HTML tags using BeautifulSoup parser. Check out Python Logic and removing HTML tags. When analyzing web data, consider the below examples for your projects. Python Ideas to Remove HTML tags How I Removed Using BeautifulSoup Import BeautifulSoup Python Logic to Remove HTML tags Before and after executing the code 1. Import BeautifulSoup import  BeautifulSoup  from  bs4 2. Python BeautifulSoup: How to Remove HTML Tags from  bs4  import  BeautifulSoup soup =  BeautifulSoup ("<!DOCTYPE html><html><body><h1>My First Heading</h1><p>My first paragraph.</p></body></html>") text = soup. get_text() print (text) 3. Before and After Run Before the run see the below code. Before Executing the code After Run the ...