Posts

Showing posts with the label data processing

Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

SAP HANA: Top Data Processing Interview Questions

1. How parallel processing is achieved in SAP HANA? The phrase "divide and conquer" (derived from the Latin saying divide et impera) typically is used when a large problem is divided into a number of smaller, easier-to-solve problems. Regarding performance, processing huge amounts of data is a problem that can be solved by splitting the data into smaller chunks of data, which can be processed in parallel. 2.How data portioning will happen in SAP HANA? Although servers that are available today can hold terabytes of data in memory and provide up to eight processors per server with up to 10 cores per processor, the amount of data that is stored in an in-memory database or the computing power that is needed to process such quantities of data might exceed the capacity of a single server. To accommodate the memory and computing power requirements that go beyond the limits of a single server, data can be divided into subsets and placed across a cluster of servers, which forms a d...