Posts

Showing posts with the label data science data analytics

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index ...

How to Identify Data Relevant for Data Science Analytics

Your government, your web server, your business partners, even your body. While we aren’t drowning in a sea of data, we’re finding that almost everything can (or has) been instrumented. We frequently combine publishing industry data from Nielsen Book Scan with our own sales data, publicly available Amazon data, and even job data to see what’s happening in the publishing industry. Data is everywhere Sites like Infochimps and Factual provide access to many large datasets, including climate data, MySpace activity streams, and game logs from sporting events. Factual enlists users to update and improve its datasets, which cover topics as diverse as endocrinologists to hiking trails. How the data is growing Much of the data we currently work with is the direct consequence of Web 2.0, and of Moore’s Law applied to data. The Web has people spending more time online and leaving a trail of data wherever they go. Mobile applications leave an even richer data trail since many of them a...

Real Opportunities to Get a Job in Data Analytics

Image
In my recent analysis, I have found that a lot of jobs will be created in big data analysis area. I have listed the real opportunities here. I have collected a few of the things, and I am sharing with you. Opportunities ahead to get a job  The huge volume of data created by users from multiple devices in a variety of formats.  Need specialized skills to analyze the data, and to get predictive results. The tools developed by SAP, IBM, and Oracle provide multiple opportunities to start a career in data analytics.   Video on job opportunities