Posts

Showing posts with the label demographic analytics

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

Business Vs Demographic Vs Product Analytics

Image
List of top analytics areas and their differences 1. Analytics in Business Advertising Analytics Brand Analytics Promotion Analytics Business-to-business marketing Analytics Social Media Analytics Tracking Studies 2. Demographic Analytics Consumer Analytics Concept Testing Data Mining Customer Satisfaction Study Analytics Demographic Analytics Employee Satisfaction Analysis Text Mining Ethnographic Analytics Media Testing Opinion Polling and Predictive Analytics Usage & Attitude Studies Segmentation Analytics Semiotic and Cultural Analysis 3. Product Analytics Packaging and Design Effectiveness Analytics New Product Development Pricing Studies Product Testing Scenario Planning  Also Read Top IT Skills You Need to Become Data Analyst