Posts

Showing posts with the label greenplum

Featured Post

Top Questions People Ask About Pandas, NumPy, Matplotlib & Scikit-learn — Answered!

Image
 Whether you're a beginner or brushing up on your skills, these are the real-world questions Python learners ask most about key libraries in data science. Let’s dive in! 🐍 🐼 Pandas: Data Manipulation Made Easy 1. How do I handle missing data in a DataFrame? df.fillna( 0 ) # Replace NaNs with 0 df.dropna() # Remove rows with NaNs df.isna(). sum () # Count missing values per column 2. How can I merge or join two DataFrames? pd.merge(df1, df2, on= 'id' , how= 'inner' ) # inner, left, right, outer 3. What is the difference between loc[] and iloc[] ? loc[] uses labels (e.g., column names) iloc[] uses integer positions df.loc[ 0 , 'name' ] # label-based df.iloc[ 0 , 1 ] # index-based 4. How do I group data and perform aggregation? df.groupby( 'category' )[ 'sales' ]. sum () 5. How can I convert a column to datetime format? df[ 'date' ] = pd.to_datetime(df[ 'date' ]) ...

Greenplum Database basics in the age of Hadoop (1 of 2)

The Greenplum Database constructs on the basis of open origin database PostgreSQL. It firstly purposes like a information storage and uses a shared-nothing architecture|shared-nothing, astronomically collateral (computing)|massively collateral handling (MPP) design. How Greenplum works... In this design, information is partitioned athwart numerous section servers, and every one section controls and commands a clearly different part of the altogether data; there is no disk-level parting nor information argument amid sections. Greenplum Database’s collateral request optimizer changes every one request into a material implementation design. Greenplum’s optimizer utilizes a cost-based set of rules to appraise prospective implementation designs, bears a worldwide view of implementation athwart the computer array, and circumstances in the charges of moving information amid knots. The ensuing request designs hold customary relational database transactions like well like collateral ...