Posts

Showing posts with the label python series

Featured Post

14 Top Data Pipeline Key Terms Explained

Image
 Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...

How to use Pandas Series Method top ideas

Image
Here is an example of how to use a Series constructor in Pandas. A one-dimensional array capable of holding any data type (integers, strings, floating-point numbers, Python objects, etc.) is called a Series object in pandas. Sample DataFrame Single dimension data Below is the single dimension data of Index and Value.  Index  Value  1  10                2  40  3  01  4  99 Having single value for an index is called Single dimensional data. On the other hand, when one index has multiple values, it is called multi-dimensional array.   Below is the example for Multi-dimensional array.  a = (1, (10,20)) mySeries =  pd. Series(data, index=index) Here, pd is a Pandas object. The data and index are two arguments. The  data refers to a Python dictionary of "ndarray"  and index is index of data. Generating DataFrame from single dimension data The below example shows, how ...