Posts

Showing posts with the label retail analytics

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index ...

Data Science in Retail Marketing and Opportunities

Image
Data Science and Analytics started by all big companies including Shoppers top and Wal-mart. Data Science in Retail Shoppers Stop started big data analytics to study customers behavior. Started with one of the easiest programs. Where they studied customer loyalty program. Some Insights Studied patterns Studied customer buying styles Some people buy shirt-only and some people buy both Shirt and Trouser Studied buying patterns of Women buyers Read more at Live Mint

Retail Analytics Solution from Leader in Data Science SAS

Image
Retail market is changed now. So many companies now open shops across the world. Every business owner tries to increase sales. This is possible with analytics. Retail Analytics The study also includes an in-depth look at how best-in-class retailers use analytics, as well as the business analytics software vendor landscape. Walmart started retail business in India. So the real use of data analytics started now. References Download here