Posts

Showing posts with the label series in pandas examples

Featured Post

15 Python Tips : How to Write Code Effectively

Image
 Here are some Python tips to keep in mind that will help you write clean, efficient, and bug-free code.     Python Tips for Effective Coding 1. Code Readability and PEP 8  Always aim for clean and readable code by following PEP 8 guidelines.  Use meaningful variable names, avoid excessively long lines (stick to 79 characters), and organize imports properly. 2. Use List Comprehensions List comprehensions are concise and often faster than regular for-loops. Example: squares = [x**2 for x in range(10)] instead of creating an empty list and appending each square value. 3. Take Advantage of Python’s Built-in Libraries  Libraries like itertools, collections, math, and datetime provide powerful functions and data structures that can simplify your code.   For example, collections.Counter can quickly count elements in a list, and itertools.chain can flatten nested lists. 4. Use enumerate Instead of Range     When you need both the index and the value in a loop, enumerate is a more Pyth

How to use Pandas Series Method top ideas

Image
Here is an example of how to use a Series constructor in Pandas. A one-dimensional array capable of holding any data type (integers, strings, floating-point numbers, Python objects, etc.) is called a Series object in pandas. Sample DataFrame Single dimension data Below is the single dimension data of Index and Value.  Index  Value  1  10                2  40  3  01  4  99 Having single value for an index is called Single dimensional data. On the other hand, when one index has multiple values, it is called multi-dimensional array.   Below is the example for Multi-dimensional array.  a = (1, (10,20)) mySeries =  pd. Series(data, index=index) Here, pd is a Pandas object. The data and index are two arguments. The  data refers to a Python dictionary of "ndarray"  and index is index of data. Generating DataFrame from single dimension data The below example shows, how to construct single dimension data (Values and Index). >>>mySeries = pd. S eries([10,20,30], index